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A Baseline Model Equations

A.1 Non-Stationary Equations

Λt(1 + τc,t) =
ζt

Ct − hCt−1
− βhIEt

󰀝
ζt+1

Ct+1 − hCt

󰀞
(1)

Λt = βRtIEtΛt+1 (2)

PB
t =

IEt

󰀋
(1 + κBPB

t+1)
󰀌

Rt
(3)

Λt = βRF
t IEtΛt+1 (4)

Φt = βIEt

󰀅
Λt+1(1− τK,t+1)r

K
t+1 + Φt+1(1− δ)

󰀆
(5)

Λt = Φtζ
I
t

󰀗
1−Υ

󰀕
It
It−1

󰀖
−Υ′

󰀕
It
It−1

󰀖
It
It−1

󰀘
+ βIEt Φt+1ζ

I
t+1Υ

′
󰀕
It+1

It

󰀖
I2t+1

I2t
(6)

γζtζ
L
t L

ν
t = Λt(1− τw,t)Wt (7)

Kt = (1− δ)Kt−1 + ζIt

󰀗
1−Υ

󰀕
It
It−1

󰀖󰀘
It (8)

Yt = Kα
t−1 (ZtLt)

1−α (9)

rKt = α
Yt

Kt−1
(10)

Wt = (1− α)
Yt
Lt

(11)

NXt = Yt − Ct − It −Gt (12)

CAt = NXt + (RF
t−1 − 1)BF

t−1 (13)

BF
t = RF

t−1B
F
t−1 +NXt (14)

RF
t = R∗

t exp

󰀗
−ψb

󰀕
bFt
yt

− bF

y

󰀖
+ ζbt

󰀘
(15)

Gt = PB
t Bt − (1 + κBPB

t )Bt−1 + τc,tCt + τw,tWtLt + τK,tr
K
t Kt−1 + TRt (16)

log zt = (1− ρz) log z + ρz log zt−1 + εz,t (17)

logR∗
t = (1− ρR∗) logR∗ + ρR∗ logR∗

t−1 + εR∗,t (18)

log gt = (1− ρ1g − ρ2g) log g + ρ1g log gt−1 + ρ2g log gt−2 − (1− ρ1g − ρ2g)γgb (byt−1 − by) + εg,t (19)

τc,t = (1− ρ1c − ρ2c)τc + ρ1cτc,t−1 + ρ2cτc,t−2 + (1− ρ1c − ρ2c)γcb (byt−1 − by) + εc,t (20)

τw,t = (1− ρ1w − ρ2w)τw + ρ1wτw,t−1 + ρ2wτw,t−2 + (1− ρ1w − ρ2w)γwb (byt−1 − by) + εw,t (21)

τK,t = (1− ρ1K − ρ2K)τK + ρ1KτK,t−1 + ρ2KτK,t−2 + (1− ρ1K − ρ2K)γKb (byt−1 − by) + εK,t (22)

τt = (1− ρ1τ − ρ2τ )τ + ρ1ττt−1 ++ρ2ττt−2 + (1− ρ1τ − ρ2τ )γτb (byt−1 − by) + ετ,t (23)

log ζt = ρζ log ζt−1 + εζ,t (24)

log ζLt = ρL log ζLt−1 + εL,t (25)

log ζIt = ρI log ζ
I
t−1 + εI,t (26)

ζbt = (1− ρb)ζ
b + ρbζ

b
t−1 + εb,t (27)
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A.2 Stationary Equations

The normalised variables are as follows:

1. ct =
Ct
Zt

2. λt = ΛtZt

3. φt = ΦtZt

4. it =
It
Zt

5. kt =
Kt
Zt

6. lt = Lt

7. rFt = RF
t

8. rt = Rt

9. wt =
Wt
Zt

10. yt =
Yt
Zt

11. bFt =
BF

t
Zt

12. bt =
Bt
Zt

13. nxt =
NXt
Zt

14. cat =
CAt
Zt

15. r∗t = R∗
t

16. gt =
Gt
Zt

17. τt =
TRt
Zt

λt(1 + τc,t) =
ζtzt

ctzt − hct−1
− βhIEt

󰀝
ζt+1

ct+1zt+1 − hct

󰀞
(28)

λt = βrtIEt

󰀕
λt+1

zt+1

󰀖
(29)

pBt =
IEt

󰀋
(1 + κBpBt+1)

󰀌

rt
(30)

λt = βrFt IEt

󰀕
λt+1

zt+1

󰀖
(31)

φt = βIEt

󰀗
λt+1

zt+1
(1− τK,t+1)r

K
t+1 +

φt+1

zt+1
(1− δ)

󰀘
(32)

λt = φtζ
I
t

󰀗
1−Υ

󰀕
itzt
it−1

󰀖
−Υ′

󰀕
itzt
it−1

󰀖
itzt
it−1

󰀘
+ βIEt

φt+1ζ
I
t+1

zt+1
Υ′

󰀕
it+1zt+1

it

󰀖󰀕
it+1zt+1

it

󰀖2

(33)

γζtζ
L
t l

ν
t = λt(1− τw,t)wt (34)

kt = (1− δ)
kt−1

zt
+ ζIt

󰀗
1−Υ

󰀕
itzt
it−1

󰀖󰀘
it (35)

yt = kαt−1l
1−α
t z−α

t (36)

rKt = α
ytzt
kt−1

(37)

wt =
(1− α)yt

lt
(38)

nxt = yt − ct − it − gt (39)

cat = nxt + (rFt−1 − 1)
bFt−1

zt
(40)

bFt =
rFt−1

zt
bFt−1 + nxt (41)
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rFt = r∗t exp

󰀗
−ψb

󰀕
bFt
yt

− bF

y

󰀖
+ ζbt

󰀘
(42)

gt+
(1 + κBpBt )bt−1

zt
= pBt bt + τc,tct + τw,twtlt +

τK,tr
K
t kt−1

zt
+ τt (43)

log zt = (1− ρz) log z + ρz log zt−1 + εz,t (44)

log r∗t = (1− ρr∗) log r
∗ + ρr∗ log r

∗
t−1 + εr∗,t (45)

log gt = (1− ρ1g − ρ2g) log g + ρ1g log gt−1 + ρ2g log gt−2 − (1− ρ1g − ρ2g)γgb (byt−1 − by) + εg,t (46)

τc,t = (1− ρ1c − ρ2c)τc + ρ1cτc,t−1 + ρ2cτc,t−2 + (1− ρ1c − ρ2c)γcb (byt−1 − by) + εc,t (47)

τw,t = (1− ρ1w − ρ2w)τw + ρ1wτw,t−1 + ρ2wτw,t−2 + (1− ρ1w − ρ2w)γwb (byt−1 − by) + εw,t (48)

τK,t = (1− ρ1K − ρ2K)τK + ρ1KτK,t−1 + ρ2KτK,t−2 + (1− ρ1K − ρ2K)γKb (byt−1 − by) + εK,t (49)

τt = (1− ρ1τ − ρ2τ )τ + ρ1ττt−1 ++ρ2ττt−2 + (1− ρ1τ − ρ2τ )γτb (byt−1 − by) + ετ,t (50)

log ζt = ρζ log ζt−1 + εζ,t (51)

log ζLt = ρL log ζLt−1 + εL,t (52)

log ζIt = ρI log ζ
I
t−1 + εI,t (53)

ζbt = (1− ρb)ζ
b + ρbζ

b
t−1 + εb,t (54)
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A.3 Steady State

z − hβ

c(z − h)
= λ(1 + τc) (55)

rF =
z

β
(56)

r =
z

β
(57)

pB=
(1 + κBpB)

r
(58)

(1− τK)rK =
z

β
+ δ − 1 (59)

λ = φ (60)

lν =
λ(1− τw)w

γ
(61)

i = k − (1− δ)
k

z
(62)

y = kα (l)1−α z−α (63)

rK = α
yz

k
(64)

w =
(1− α)y

l
(65)

nx = y − c− i− g (66)

ca = nx+ (rF − 1)
bF

z
(67)

bF =
rF

z
bF + nx (68)

rF = r∗ exp(ζb) (69)

g +

󰀕
(1 + κBpB)

z
− pB

󰀖
b = τcc+ τwwl +

τKrKk

z
+ τ (70)

A.4 Log-Linear Equations and Observation Equations

Tax rates, debt, foreign debt, the current account and trade balance are defined in terms of

deviations from their steady state values. For these variables we use the notation, x̃t = xt − x.

Remaining variables are expressed in log-deviations, that is x̂t = log xt − log x.

A.4.1 Structural Equations

0 = (z − hβ)(z − h)

󰀕
λ̂t +

1

1 + τc
τ̃c,t

󰀖
+ (z2 + h2β)ĉt − hβzĉt+1 − hzĉt−1 + hzẑt

− hβzẑt+1 − (z − h)(zζ̂t − hβζ̂t+1) (71)
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0 = −λ̂t + λ̂t+1 + r̂t − ẑt+1 (72)

0 = −λ̂t + λ̂t+1 + r̂Ft − ẑt+1 (73)

0 = p̂Bt − κB

(1 + κBpB)
p̂Bt+1 + r̂t (74)

0 = −φ̂t +
β(1− τK)rK

z

󰀓
λ̂t+1 − ẑt+1 + r̂Kt+1

󰀔
− βrK

z
τ̃K,t+1 +

β(1− δ)

z

󰀓
φ̂t+1 − ẑt+1

󰀔
(75)

0 = −λ̂t + φ̂t + ζ̂It − z2Υ
′′
󰀓
(1 + β)̂it − ît−1 − β ît+1 + ẑt − βẑt+1

󰀔
(76)

0 = λ̂t + ŵt −
1

1− τw
τ̃wt − ν l̂t − ζ̂Lt − ζ̂t (77)

0 = k̂t −
1− δ

z
(k̂t−1 − ẑt)−

z − 1 + δ

z
(̂it + ζ̂It ) (78)

0 = ŷt − αk̂t−1 − (1− α)l̂t + αẑt (79)

0 = ŷt + ẑt − k̂t−1 − r̂Kt (80)

0 = ŷt − l̂t − ŵt (81)

0 = −ñxt + yŷt − cĉt − îit − gĝt (82)

0 = −c̃at + ñxt +
rF bF

z
r̂Ft−1 +

󰀕
rF − 1

z

󰀖
b̃Ft−1 −

󰀕
rF − 1

z

󰀖
bF ẑt (83)

0 = −b̃Ft + ñxt +
rF

z
b̃Ft−1 +

rF bF

z
r̂Ft−1 −

rF bF

z
ẑt (84)

0 = −r̂Ft + r̂∗t −
ψb

y
b̃Ft +

ψbb
F

y
ŷt + ζbt (85)

0 = gĝt +
κBpBb

z
p̂Bt +

(1 + κBpB)

z
b̃t−1 −

(1 + κBpB)b

z
ẑt−pB b̃t − pBbp̂Bt − cτ̃c,t − τccĉt

−wlτ̃w,t − wlτw(ŵt + l̂t)−
rKk

z
τ̃K,t −

τKrKk

z
(r̂Kt + k̂t−1 − ẑt)− τ̃t (86)

0 = −ĝt + ρ1g ĝt−1 + ρ2g ĝt−2 − (1− ρ1g − ρ2g)γgb

󰀕
pB

y
b̃t−1 +

pBb

y
p̂Bt−1 −

pBb

y
ŷt−1

󰀖
+ εg,t (87)

0 = −τ̃c,t + ρ1c τ̃c,t−1 + ρ2c τ̃c,t−2 + (1− ρ1c − ρ2c)γcb

󰀕
pB

y
b̃t−1 +

pBb

y
p̂Bt−1 −

pBb

y
ŷt−1

󰀖
+ εc,t (88)

0 = −τ̃w,t + ρ1w τ̃w,t−1 + ρ2w τ̃w,t−2 + (1− ρ1w − ρ2w)γwb

󰀕
pB

y
b̃t−1 +

pBb

y
p̂Bt−1 −

pBb

y
ŷt−1

󰀖
+ εw,t (89)

0 = −τ̃K,t + ρ1K τ̃K,t−1 + ρ2K τ̃K,t−2 + (1− ρ1K − ρ2K)γKb

󰀕
pB

y
b̃t−1 +

pBb

y
p̂Bt−1 −

pBb

y
ŷt−1

󰀖
+ εK,t (90)

0 = −τ̃t + ρ1τ τ̃t−1 + ρ2τ τ̃t−2 + (1− ρ1τ − ρ2τ )γτb

󰀕
pB

y
b̃t−1 +

pBb

y
p̂Bt−1 −

pBb

y
ŷt−1

󰀖
+ ετ,t (91)
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0 = ẑt − ρz ẑt−1 − εz,t (92)

0 = r̂∗t − ρr∗ r̂
∗
t−1 − εr∗,t (93)

0 = ζ̂t − ρζ ζ̂t−1 − εζ,t (94)

0 = ζ̂Lt − ρLζ̂
L
t−1 − εL,t (95)

0 = ζ̂It − ρI ζ̂
I
t−1 − εI,t (96)

0 = ζbt − (1− ρb)ζ
b − ρbζ

b
t−1 − εb,t (97)

A.4.2 Observation Equations

∆ŷobst = ŷt − ŷt−1 + ẑt (98)

∆ĉobst = ĉt − ĉt−1 + ẑt (99)

ĝ

y

obs

t

= ĝt − ŷt (100)

ñxobs
t =

1

y
ñxt −

nx

y
ŷ (101)

∆ŵobs
t = ŵt − ŵt−1 + ẑt (102)

r̂obst = r̂t (103)

r̂∗
obs

t = r̂∗t (104)

˜󰀕
pBb

y

󰀖obs

t

=
pB

y
b̃t +

pBb

y
p̂Bt − pBb

y
ŷt (105)

ˆ󰀕
τcc

y

󰀖obs

t

=
c

y
τ̃c,t +

τcc

y
ĉt −

τcc

y
ŷt (106)

ˆ󰀕
τwwl

y

󰀖obs

t

=
wl

y
τ̃w,t +

τwwl

y
ŵt +

τwwl

y
l̂t −

τwwl

y
ŷt (107)

ˆ󰀕
τKrKk

y

󰀖obs

t

=
rKk

y
τ̃K,t +

τKr
Kk

y
r̂Kt +

τKr
Kk

y
k̂t−1 −

τKr
Kk

y
ŷt (108)
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A.5 Derivation of Life-time Utility Function

The representative household maximises expected lifetime utility given by:

IE0

∞󰁛

t=0

βtζt

󰀕
log (Ct − hCt−1)− ζLt

L1+ν
t

1 + ν

󰀖
(109)

Using the normalised consumption variable ct =
Ct

Zt
and the fact that Zt = ztZt−1, the utility

function can be written as:

IE0

∞󰁛

t=0

βtζt

󰀕
log(Zt) + log

󰀕
ct − h

ct−1

zt

󰀖
− ζLt

L1+ν
t

1 + ν

󰀖
(110)

Along the balanced growth path, and using ln(Zt) = t ln(z), we have:

U =
∞󰁛

t=0

βt

󰀕
log(c)− L1+ν

1 + ν
+ log

󰀕
1− h

z

󰀖
+ t log(z)

󰀖

=
1

1− β

󰀗
log(c)− L1+ν

1 + ν
+ log

󰀕
1− h

z

󰀖
+

β log(z)

1− β

󰀘
(111)
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B Data Sources

This section describes the data used to estimate the model.

• Population: Quarterly gross domestic product in chain volume measure (ABS Catalogue

5206.001) divided by quarterly gross domestic product per capita also in chain volume

measure (ABS Catalogue 5206.001).

• Real GDP per capita: Quarterly gross domestic product per capita in chain volume

measure (ABS Catalogue 5206.001). This series enters in first difference in the estimation.

• Consumption per capita: Quarterly private consumption in chain volume measure

(ABS Catalogue 5206.002) divided by population. This series enters in first difference in

the estimation with its sample mean adjusted to match the sample mean of real output

growth.

• Government spending-to-GDP ratio: Quarterly government consumption and pu-

bic gross fixed capital formation in current prices (ABS Catalogue 5206.003) divided by

quarterly gross domestic product in current prices (ABS Catalogue 5206.003). This series

enters in log form in the estimation.

• Net exports-to-GDP ratio: Net exports-to-GDP is computed as exports-to-GDP less

imports-to-GDP. Exports-to-GDP is quarterly exports in current price measure divided by

quarterly gross domestic product in current prices. Imports to-GDP is quarterly imports

in current prices divided by quarterly gross domestic product in current prices (ABS

Catalogue 5206.003). The sample mean of this series is removed prior to the estimation.

• Hourly wage: Compensation of employees (ABS Cat 5206.044) divided by the hours

worked index (ABS Cat 5206.001). The series is deflated by the consumption deflator

(ABS Cat 5206.005). This series enters in first difference with its sample mean adjusted

to equal the mean of output growth.

• Domestic Real interest rate: 90-day bank bill rate (RBA Bulletin Table F1). This

nominal interest rate is converted to a real rate using the trimmed mean inflation series

(RBA Bulletin Table G1). The monthly series is converted into quarterly frequency by

arithmetic averaging.

• Foreign Real interest rate: 3-months U.S. Treasury bill rate (FRED Database). This

nominal interest rate is converted to a real rate using the U.S. core PCE inflation series

(FRED Database). The monthly series is converted into quarterly frequency by arithmetic

averaging.
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• Government debt-to-GDP-ratio: Commonwealth government securities on issue (Aus-

tralian Office of Financial Management and RBA Bulletin Table E3) divided by quarterly

gross domestic product in current prices (ABS Catalogue 5206.003).

• Consumption tax revenues-to-GDP-ratio: The sum of sales tax revenues and goods

and services tax revenues in current prices (ABS Cat 5206.022) divided by quarterly

gross domestic product in current prices (ABS Catalogue 5206.003). The mean of the

series is adjusted for the subsample 1983-2000 to adjust for the break resulting from the

introduction of the goods and services tax in the year 2000.

• Labour income tax revenues-to-GDP ratio: Individual income tax revenues in cur-

rent prices (ABS Cat 5206.022) divided by quarterly gross domestic product in current

prices (ABS Catalogue 5206.003).

• Capital income tax revenues-to-GDP ratio: The sum of resident corporations’ in-

come tax revenues and non-residents’ income tax revenues in current prices (ABS Cat

5206.022) divided by quarterly gross domestic product in current prices (ABS Catalogue

5206.003)
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C Solution and Estimation Procedure

The model is estimated and solved using the technique developed in Kulish and Pagan (2017)

for models with structural changes. We allow for the structural breaks in steady-state trend

growth, z, steady-state labour income tax rate, τw, steady-state capital income tax rate τK and

in the variance of shocks to happen at possibly different dates in the sample, Tz and Tσ. Hence,

for the data sample t = 1, 2, · · · , T , and assuming that Tz < Tσ, three different regimes occur:

1. First regime: For t = 1, 2, · · · , Tz − 1, steady-state labour-augmenting technology growth

takes an initial value, z. In the initial regime, the first-order approximation to the equi-

librium conditions around the steady state is a linear rational expectations system of

equations that is given by:

A0yt = C0 + A1yt−1 + IEtB0yt+1 +D0εt (112)

where the structural matrices A0, C0, A1, B0 and D0 correspond to the initial steady

state, yt is vector of state and jump variables and εt is a vector of exogenous iid shocks.

The solution, if it exists and is unique, will be a Vector Autoregression (VAR) that takes

the form:

yt = C +Qyt−1 +Gεt (113)

2. Second regime: For t = Tz, · · · , Tσ−1, steady-state labour-augmenting technology growth

takes a different value, say z′. The structural form of the model then becomes:

A∗
0yt = C∗

0 + A∗
1yt−1 + IEtB

∗
0yt+1 +D0εt (114)

where the superscript ∗ is associated with the matrices that correspond to the new steady-

state commodity price level. Note that the matrix D0 is unchanged as the break in the

variances of shocks hasn’t occurred yet. The solution, if it exists and is unique, will be a

VAR that takes the form:

yt = C∗ +Q∗yt−1 +G∗εt (115)

3. Third regime: For t = Tσ, · · · , T , the variances of shocks change. The structural form of

the model then becomes:

A∗
0yt = C∗

0 + A∗
1yt−1 + IEtB

∗
0yt+1 +D∗∗

0 εt (116)

where the matrix D∗∗
0 denotes the matrix corresponding to the new variances of shocks

while other structural matrices are maintained as in the second regime. The solution, if

it exists and is unique, will be a VAR that takes the form:

yt = C∗ +Q∗yt−1 +G∗∗εt (117)
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Based on the three regimes, the time-varying reduced form is given by:

yt = Ct +Qtyt−1 +Gtεt (118)

Given a data sample, one can form an observable variables vector, yobst , that relates to the

variables in the model by:

yobst = Hyt + vt (119)

where vt is a vector of iid measurement errors with zero mean and covariance matrix V . To-

gether, the state equation, Equation (118), and the observation equation, Equation (119), form

a state-space model. Hence, the data sample’s likelihood function can be constructed by using

the Kalman filter as outlined in Kulish and Pagan (2017).

To estimate the model, the standard practice in the DSGE literature is to use Bayesian

techniques that place informative priors on the estimated parameters. Bayesian methods

are adopted to estimate non-calibrated parameters (ϑ) and the dates of structural changes

(T). In this framework, a prior distribution on non-calibrated parameters and dates of struc-

tural changes, p(ϑ,T), is updated by sample information contained in the likelihood function

L(Y |ϑ,T) to form a posterior distribution

p(ϑ,T|Y ) = L(Y |ϑ,T)p(ϑ,T) (120)

Since the mapping from the DSGE model to its likelihood function L(Y |ϑ,T) is nonlinear

in the parameters, the construction of the posterior distribution is too complicated to evaluate

analytically. Therefore, the Metropolis Hastings algorithm is used to simulate from the joint

posterior distribution of the structural parameters and the date breaks.

C.1 Computation of the non-stochastic transition paths

The initial regime has a steady state given by y = (I −Q)−1C. When there is a break in trend

growth or in other parameters, the steady state would shift to y∗ = (I−Q∗)−1C∗. We compute

the non-stochastic transition path from one steady state to another, as the path the economy

takes in the absence of business cycle shocks, that is εt = 0 for all t, but in the presence of

the regime changes. This path is given by the time-varying VAR with εt = 0, that is the path

given by yt = Ct +Qtyt−1.
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D Growth Accounting Calculations

To perform the growth accounting exercise, we assume Australia’s output per capita can be

modelled as a Cobb-Douglas aggregate of available technology and capital per capita:

yt = Atk
α
t (121)

where yt is output per capita, At is total factor productivity, and kt is capital per capita. Hence,

output per capita growth, gy, is given as:

gy = ga + αgk (122)

where ga is the contribution of total factor productivity to output per capita growth and αgk is

the contribution of capital per capita of output growth. The results of the growth accounting

calculations for Australia are given in Table D.1.

Table D.1: Growth Accounting Calculations for Australia

Period
Average GDP per
capita growth

Contribution of
capital per capita

Contribution of total
factor productivity

% % %
1990-2000 2.02 0.61 1.41
1990-2017 1.65 0.70 0.95
2000-2017 1.36 0.77 0.59
2010-2017 1.10 0.70 0.40

Below is a description of the data used in the growth accounting calculation:

• Population: Annual gross domestic product in chain volume measure (ABS Catalogue

5204.0) divided by annual gross domestic product per capita also in chain volume measure

(ABS Catalogue 5204.0).

• Real GDP per capita: Gross domestic product using the production based approach

in chain volume measure (ABS Catalogue 5204.0) divided by population.

• Capital per capita: End-year net capital stock in chain volume measure (ABS catalogue

5204.0) divided by population.

• Capital share in production function: The ratio of gross operating surplus in all

sectors to income. Income is computed as the sum of compensation of employees (ABS

Catalogue 5204.0) and gross operating surplus in all sectors (ABS Catalogue 5204.0).
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E Unobserved Components Estimates

We set up linear and non-linear unobserved components trend-cycle decomposition models for

the quarterly level of GDP and allow for a break in output trend to happen at any date as well

as a break in the variance of the shock to the trend and variance of the shock to the cycle to

occur on the same date.

E.1 Linear Unobserved Components Model

The linear unobserved components trend-cycle decomposition model is given by:

yt = τt + ct (123)

τt = z1(t < Tz) + (z +∆z)1(t ≥ Tz) + τt−1 + 󰂃τt (124)

ct = ρ1ct−1 + ρ2ct−2 + 󰂃ct (125)

where yt is the logarithm of Australia’s real GDP per capita which is decomposed into a trend

component τt and a cyclical component ct. The trend component τt is specified as a random

walk with a drift and we allow for a break in the drift to happen at the date Tz. 1(A) is an

indicator function that takes the value 1 if the condition A is true and a value of 0 otherwise.

As such, the mean growth rate of the trend equals z before the break date Tz, and z′ = z+∆z

on and after the break date. The cyclical component ct is modelled as a zero-mean stationary

AR(2) process. We assume that the innovations 󰂃τt and 󰂃ct are independently normal:

󰀕
󰂃τt
󰂃ct

󰀖
= N

󰀕
0,

󰀗
µσ2

τ1(t < Tσ) + σ2
τ1(t ≥ Tσ) 0

0 µσ2
c1(t < Tσ) + σ2

c1(t ≥ Tσ)

󰀘󰀖

We allow for a break in the variances of the innovations 󰂃τt and 󰂃ct to occur at the same date Tσ.

As such, the variances of the shocks to the trend and the cycle are respectively µσ2
τ and µσ2

c

before the break date Tσ, and σ2
τ and σ2

c on and after the break date.

The linear unobserved components trend-cycle decomposition model can be written is state

space form:

yt =
󰀅
1 1 0

󰀆
xt (126)

xt =

󰀵

󰀷
z

0

0

󰀶

󰀸1(t < Tz) +

󰀵

󰀷
z′

0

0

󰀶

󰀸1(t ≥ Tz) +

󰀵

󰀷
1 0 0

0 ρ1 ρ2
0 1 0

󰀶

󰀸 xt−1 +

󰀵

󰀷
1 0

0 1

0 0

󰀶

󰀸
󰀗
󰂃τt
󰂃ct

󰀘
(127)

where xt =
󰀅
τt ct ct−1

󰀆′
.

To estimate the model, we calibrate the growth rate in the initial regime at 0.0055 as in the

small open economy model and use a Bayesian estimation technique to estimate the remaining

parameters (ϑ) and the break dates (T). We set the priors to either be in consistence with
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the literature or to be uninformative. Uniform prior with support -0.0045 to 0.015 is set for

the mean growth of the trend parameter z′ . Normal distribution with mean 0.9 and standard

deviation 1 is imposed on the autoregressive parameter ρ1. For the autoregressive parameter ρ2,

we impose a normal prior with mean 0 and standard deviation 1. The priors on the standard

deviations of shocks, στ and σc are set as uniform priors with support 0 and 0.2. Further, a

uniform prior [0, 3] is imposed on the variance scale parameter µ. Finally, flat priors are imposed

for the break date Tz and Tσ and the initial regime is restricted to be at least 60 quarters long.

The prior and posterior distributions of the parameters from estimating the model at level and

at first-difference are listed in Tables E.1 and E.2, respectively.

Table E.1: Prior and Posterior Distribution of the Parameters and Break Dates from Level
Estimation

Prior distribution Posterior distribution

Parameter Dist. Mean S.d. Mean Mode 5% 95%
Parameters

z′ Uniform [−0.0045, 0.015] 0.0025 0.0029 0.0014 0.0036
ρ1 Normal 0.9 1 0.8344 0.8907 0.1365 1.4520
ρ2 Normal 0 1 -0.2197 0.0017 -0.7982 0.4072
στ Uniform [0, 0.2] 0.0074 0.0079 0.0031 0.0094
σc Uniform [0, 0.2] 0.0026 0.0004 0.0002 0.0076
µ Uniform [0, 3] 1.9941 1.8537 1.5998 2.4486
Tz Flat [1997:Q4, 2015:Q2] 2006:Q3 2008:Q1 2002:Q2 2008:Q4
Tσ Flat [1997:Q4, 2015:Q2] 2002:Q1 2004:Q2 1998:Q2 2005:Q2

Table E.2: Prior and Posterior Distribution of the Parameters and Break Dates from First-
Difference Estimation

Prior distribution Posterior distribution

Parameter Dist. Mean S.d. Mean Mode 5% 95%
Parameters

z′ Uniform [−0.0045, 0.015] 0.0025 0.0030 0.0014 0.0036
ρ1 Normal 0.9 1 0.8237 0.9620 0.1286 1.4446
ρ2 Normal 0 1 -0.2154 0.0000 -0.8041 0.4214
στ Uniform [0, 0.2] 0.0074 0.0001 0.0029 0.0096
σc Uniform [0, 0.2] 0.0026 0.0078 0.0002 0.0076
µ Uniform [0, 3] 2.0051 1.8420 1.6041 2.4713
Tz Flat [1997:Q4, 2015:Q2] 2006:Q3 2008:Q1 2002:Q2 2008:Q4
Tσ Flat [1997:Q4, 2015:Q2] 2002:Q1 2004:Q2 1998:Q2 2005:Q2
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E.2 Non-linear Unobserved Components Model

The non-linear unobserved components model is set up as a Friedman’s Plucking model as in

Kim and Nelson (1999). Here, the trend-cycle decomposition is given by:

yt = τt + ct (128)

τt = z1(t < Tz) + (z +∆z)1(t ≥ Tz) + τt−1 + 󰂃τt (129)

ct = ρ1ct−1 + ρ2ct−2 + πSt + 󰂃ct (130)

πSt = πSt, π ∕= 0 (131)

where πSt is an asymmetric, discrete, shock which is dependent upon an unobserved variable St.

We assume that St evolves according to a first-order Markov-switching process as in Hamilton

(1989):

Pr[St = 1|St−1 = 1] = p (132)

Pr[St = 0|St−1 = 0] = q (133)

As in the linear model, the trend component τt is specified as a random walk with a drift and we

allow for a break in the drift to happen at the date Tz.The non-linear unobserved components

trend-cycle decomposition model can be written is state space form:

yt =
󰀅
1 1 0

󰀆
xt (134)

xt =

󰀵

󰀷
z

πSt

0

󰀶

󰀸1(t < Tz) +

󰀵

󰀷
z′

πSt

0

󰀶

󰀸1(t ≥ Tz) +

󰀵

󰀷
1 0 0

0 ρ1 ρ2
0 1 0

󰀶

󰀸 xt−1 +

󰀵

󰀷
1 0

0 1

0 0

󰀶

󰀸
󰀗
󰂃τt
󰂃ct

󰀘
(135)

where xt =
󰀅
τt ct ct−1

󰀆′
.

To estimate the non-linear model, we calibrate the growth rate in the initial regime at 0.0055

as in the small open economy model and use a Bayesian estimation technique to estimate the

remaining parameters (ϑ) and the break dates (T). In estimation, the Kim (1994) filter is used

which combines the Kalman filter with Hamilton (1989) filter for Markov-switching models.

The prior and posterior distributions of the parameters from estimating the model at level are

listed in Table E.3.
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Table E.3: Prior and Posterior Distribution of the Parameters and Break Dates from Level
Estimation

Prior distribution Posterior distribution

Parameter Dist. Mean S.d. Mean Mode 5% 95%
Parameters

z′ Uniform [−0.0045, 0.015] 0.0025 0.0029 0.0015 0.0035
ρ1 Normal 0.9 1 1.0420 0.5306 0.2979 1.5729
ρ2 Normal 0 1 -0.3338 0.0004 -0.7660 0.1852
στ Uniform [0, 0.2] 0.0072 0.0079 0.0057 0.0092
σc Uniform [0, 0.2] 0.0004 0.0028 0.0003 0.0061
µ Uniform [0, 3] 2.0993 1.9003 1.6438 2.6442
π Uniform [−0.05, 0.05] 0.0015 -0.0015 -0.0041 0.0063
p Beta 0.05 0.15 0.0504 0.0000 0.0026 0.1446
q Beta 0.25 0.1 0.2605 0.2241 0.1196 0.4275
Tz Flat [1997:Q4, 2015:Q2] 2006:Q2 2007:Q2 2001:Q3 2008:Q3
Tσ Flat [1997:Q4, 2015:Q2] 2002:Q1 2004:Q1 1998:Q1 2008:Q1
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F Additional Estimation Results

F.1 Observables

Figure F.1 plots the observables used in the model estimation: the growth rate of GDP per

capita in chain volume terms, the growth rate of private consumption per capita in chain volume

terms, government spending as a share of GDP, net-exports as a share of GDP, the growth rate

of the real hourly wage, the domestic real interest rate, the foreign real interest rate, public

debt as a share of GDP, as well as consumption tax revenues, labour income tax revenues, and

capital income tax revenues as shares of GDP.

Figure F.1: Observable Variables Used in Estimation

Sources: ABS; AOFM; Authors’ calculations; FRED; RBA
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F.2 Posterior Distribution of Trend Growth and Date Breaks

Figure F.2 shows the posterior distribution of z′ = z + ∆z together with the mean of growth

for the period 1983-2008 which is our calibrated value for trend growth in the initial regime.

After the break, trend growth in GDP per capita in annual terms is estimated to be around

0.93% at the mode of the posterior. And while there is some uncertainty around this estimate,

there is little mass close to the trend growth rate of the initial regime.

Figure F.2: Posterior Distribution of Trend Growth

Figure F.3 shows the estimated cumulative distribution functions for the date breaks in

trend growth and the variance of shocks. The mean for the break in trend growth is estimated

to be the fourth quarter of 2004 while the mode is the first quarter of 2005. There is about

60% probability that the break in trend growth occurred between 2003 and 2005; the remaining

40% probability is spread between 2005 and 2008.

Figure F.3: Cumulative Posterior Distributions of Date Breaks
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F.3 Prior and Posterior Distributions of Parameters

Figure F.4 plots the probability density functions under the prior and the posterior. All pos-

terior densities are estimated using the Epanechnikov kernel function. Even with diffuse priors

applied to the majority of parameters, the data proves to be highly informative, steering the

posteriors toward more concentrated regions within the parameter space.

Figure F.4: Prior and Posterior Distributions
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F.4 Variance Decompositions

In our sample, the economy can be in one of four possible regimes. The estimated cumulative

distribution functions, however, suggest that the most prevalent are the high trend growth

high variance and the low trend growth low variance regimes. Table F.1 computes variance

decompositions of the two regimes for the observable series used in estimation.

In spite of the estimated regime changes, the contributions of shocks to the variance of the

observables is broadly stable across regimes. Productivity and labour supply shocks account for

over 80 per cent of the variance of output growth. Fiscal policy shocks, shocks to government

spending and tax revenues, however, do not account for the bulk of the fluctuations in output

growth, consumption growth, net exports, wage growth and the domestic real interest rates

which suggests that fiscal policy is not a significant source of macroeconomic volatility.

Table F.1: Variance Decompositions

Shock

Variable εz εR∗ εζ εL εI εb εg εc εw εK ετ
Initial Regime
Output growth 39.6 2.4 7.0 36.4 4.7 3.4 1.5 0.0 4.9 0.1 0.0
Consumption growth 17.5 3.4 30.9 27.6 11.7 2.8 4.8 0.1 0.4 0.6 0.0
Net exports/GDP 2.7 13.2 11.0 6.2 56.4 5.8 3.5 0.0 1.0 0.2 0.0
Wage growth 77.5 0.7 3.1 11.9 3.7 1.0 0.4 0.0 1.6 0.1 0.0
Domestic real interest rate 1.6 19.3 7.9 2.0 24.3 43.4 0.9 0.0 0.2 0.4 0.0
Foreign real interest rate 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Government spending/GDP 0.8 0.0 1.4 60.3 1.1 0.0 36.1 0.0 0.1 0.2 0.0
Government debt/GDP 0.4 0.0 0.7 44.8 0.5 0.0 31.5 6.3 2.5 5.3 8.0
Consumption tax revenues/GDP 0.5 0.1 1.7 15.1 0.7 0.0 4.5 75.6 0.3 0.9 0.6
Labour income tax revenues/GDP 0.2 0.0 0.4 27.1 0.3 0.0 17.9 3.9 43.5 2.9 3.7
Capital income tax revenues/GDP 0.1 0.0 0.2 14.6 0.1 0.0 8.0 2.1 0.5 73.1 1.3

Final Regime
Output growth 39.7 2.4 7.0 37.1 4.1 3.4 1.3 0.0 4.7 0.1 0.0
Consumption growth 18.0 3.5 31.5 27.2 11.5 2.8 4.4 0.1 0.4 0.5 0.0
Net exports/GDP 2.9 14.2 12.9 6.9 51.9 6.2 3.8 0.0 1.0 0.2 0.0
Wage growth 78.0 0.7 3.1 12.1 3.0 1.0 0.4 0.0 1.5 0.1 0.0
Domestic real interest rate 1.5 19.9 8.4 2.1 22.1 44.6 0.9 0.0 0.2 0.4 0.0
Foreign real interest rate 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Government spending/GDP 0.9 0.0 1.4 60.6 1.0 0.0 35.8 0.0 0.1 0.2 0.0
Government debt/GDP 0.5 0.0 0.8 45.8 0.5 0.0 30.3 6.9 2.5 5.3 7.6
Consumption tax revenues/GDP 0.5 0.1 1.8 16.1 0.7 0.0 4.3 74.7 0.3 0.9 0.6
Labour income tax revenues/GDP 0.3 0.0 0.5 28.0 0.3 0.0 17.4 4.2 42.9 3.0 3.6
Capital income tax revenues/GDP 0.1 0.0 0.2 15.2 0.1 0.0 7.8 2.3 0.5 72.5 1.3

Note: The variance shares are reported in per cent.
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G Additional Model Validation

G.1 Prior Predictive Analysis

We evaluate the performance of the estimated model by comparing the model’s predictions

under the prior and posterior densities with the actual data. We take 100 draws from the prior

and posterior densities and at each draw compute the non-stochastic transition path. Figure

G.1 compares the paths under both the prior and posterior densities of the observables. The

predictions of the observable variables from the prior density exhibit significant deviations from

the empirical paths. Meanwhile, the posterior density shrinks that uncertainty and matches

the actual data better. This suggests that the model’s parameter estimates obtained through

estimation improve the model’s non-stochastic transitional dynamics.

Figure G.1: Transitional Dynamics from Prior and Posterior Densities

Sources: ABS; Authors’ calculations; FRED; RBA

We also assess the variability of the model variables. Table G.1 compares the theoretical

standard deviations of the observables used in estimation computed at the posterior mode and

the prior mode values of the parameters with their empirical counterparts. Table G.1 also
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reports the 90% probability interval implied by the model’s posterior and prior densities. It is

evident that for most variables, the mode of the posterior standard deviations is notably closer

to the standard deviation of the data than the mode of the prior standard deviations. This is

particularly true for wage growth, the domestic real interest rate, the foreign real interest rate,

government spending-to-output ratio and capital income tax revenue-to-output ratio where the

posterior modes are closer to their empirical counterpart. The 90% confidence intervals for the

posterior standard deviations are also noticeably narrower, indicating a more precise estimate.

This shows that the model estimation leads to improvement in the model’s fit.

Table G.1: Standard Deviations from Prior and Posterior Densities

Data Posterior distribution Prior distribution
[1983 - 2018] Mode 5% 95% Mode 5% 95%

Output growth 0.0069 0.0113 0.0113 0.0130 0.0568 0.0253 0.1740
Consumption growth 0.0066 0.0103 0.0097 0.0116 0.1273 0.0097 0.2914
Net exports/GDP 0.0123 0.0210 0.0201 0.0281 0.1154 0.0401 0.3690
Wage growth 0.0101 0.0096 0.0094 0.0111 0.0238 0.0123 0.0747
Domestic real interest rate 0.0061 0.0064 0.0062 0.0077 0.1266 0.0313 0.2802
Foreign real interest rate 0.0053 0.0054 0.0049 0.0071 0.0041 0.0044 0.0619
Government spending/GDP 0.0678 0.0798 0.0608 0.1337 0.1696 0.1097 0.8845
Public debt/GDP 0.2419 0.6123 0.3392 0.8516 0.1392 0.1295 1.2614
Consumption tax revenues/GDP 0.0022 0.0081 0.0041 0.0137 0.0128 0.0063 0.0715
Labour income tax revenues/GDP 0.0103 0.0119 0.0091 0.0215 0.0202 0.0127 0.1302
Capital income tax revenues/GDP 0.0090 0.0103 0.0078 0.0258 0.0042 0.0045 0.0509
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G.2 MCMC Chain Convergence

In Figure G.2, we present the convergence analysis of the two chains executed during the

estimation process, employing the Gelman et al. (2019) R2 diagnostic. The R2 diagnostic lies

below the threshold value of 1.1 for all parameters and date breaks by the end of the chain.

This indicated convergence across chains in the posterior distributions, validating the reliability

of the estimation results.

Figure G.2: Chain Convergence Diagnostics
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G.3 Investment Shocks and Credit Spreads

Figure G.3 illustrates the correlation between the filtered innovation of the marginal efficiency

of investment and the Australian non-financial corporate A-rated bonds’ spread to swap across

various tenors. The figure reveals a negative correlation between the filtered investment effi-

ciency innovation and credit spreads at different leads and lags. This is consistent with economic

intuition. Improved investment efficiency tends to coincide with lower credit spreads, reflecting

positive economic conditions and reduced credit risk.

Figure G.3: Correlation (credit spread(t),marginal efficiency of investment(t− j))

Sources: Authors’ calculations; RBA
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G.4 Tax Shocks and the GST reform of 2000

Figure G.4 illustrates the filtered innovations in the consumption tax rate shock and the labour

income tax rate shock evaluated at the mode of the posterior distribution. The abrupt surge

in the shock to the tax rate on consumption aligns with the implementation of the Goods

and Services Tax (GST) in Australia in mid-2000. This tax reform also entailed a decrease in

personal income tax, which is also captured by the downward spike in the innovation to the

labor income tax rate. Consequently, the estimated tax shocks are consistent in tax policy

changes in Australia.

Figure G.4: Filtered Innovations of Tax Rate Shocks

28



G.5 Testing for Structural Breaks

In the model estimation, we allow for a single break in trend growth. To explore the potential

for multiple structural breaks in the time series, we conduct the Bai and Perron (1998) test

for multiple structural changes in linear models on quarterly Australian real GDP per capita

growth spanning the period 1983:Q1-2018:Q1. The results are presented in Table G.2. The

findings reveal that the hypothesis of zero breaks is rejected in favour of at least one break.

However, when comparing one break against two or more breaks, the test fails to reject the

null hypothesis. Consequently, we conclude that there is one break in the series of real GDP

per capita growth, aligning with our assumption in the estimation. Furthermore, the estimated

break date is identified as 2007:Q3, consistent with the outcomes obtained from the unobserved

components model. Thus, the results of the Bai and Perron (1998) test lend support to the

assumption of a single break in the trend growth in the structural model.

Table G.2: Bai-Perron Test Results

Null Alternative Test Statistic 5% Critical Value
H0: no breaks H1: 1 break 6.97 5.74
H0: 1 break H1: 2 breaks 2.03 6.47
H0: 2 breaks H1: 3 breaks 2.55 7.01
H0: 3 breaks H1: 4 breaks 7.69 7.42
H0: 4 breaks H1: 5 breaks 2.41 7.64
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G.6 Results from Alternative Specifications

Table G.3: Results from Specification with No Changes in Tax Rates

Baseline No Change in Tax Rates
Parameter Mean Mode 5% 95% Mean Mode 5% 95%
Structural Parameters

h 0.58 0.57 0.51 0.64 0.58 0.59 0.52 0.65

Υ
′′

2.62 2.45 1.51 3.99 2.67 2.41 1.56 3.98
ψb 0.53 0.50 0.37 0.74 0.52 0.50 0.37 0.72
∆z -0.0030 -0.0032 -0.0047 -0.0010 -0.0026 -0.0026 -0.0042 -0.0009
∆τw -0.0179 -0.0201 -0.0284 -0.0047
∆τK 0.0474 0.0485 0.0158 0.0759
µ 1.91 1.89 1.68 2.16 1.91 1.93 1.68 2.17

Fiscal Rules Parameters
γgb 0.166 0.026 0.013 0.418 0.166 0.036 0.012 0.421
γcb 0.120 0.029 0.013 0.380 0.103 0.026 0.011 0.348
γwb 0.037 0.021 0.007 0.091 0.113 0.057 0.016 0.342
γKb 0.124 0.032 0.009 0.374 0.142 0.052 0.013 0.392
γτb 0.064 0.053 0.010 0.131 0.066 0.050 0.013 0.131
ρ1g 0.64 0.65 0.53 0.75 0.65 0.65 0.53 0.76
ρ1c 0.68 0.70 0.56 0.79 0.69 0.69 0.57 0.80
ρ1w 0.49 0.49 0.37 0.61 0.55 0.55 0.44 0.66
ρ1K 0.66 0.67 0.55 0.77 0.67 0.67 0.55 0.77
ρ1τ 0.21 0.19 0.09 0.34 0.21 0.18 0.09 0.33
ρ2g 0.31 0.31 0.20 0.42 0.30 0.30 0.19 0.42
ρ2c 0.30 0.29 0.19 0.41 0.29 0.27 0.18 0.40
ρ2w 0.36 0.36 0.25 0.47 0.40 0.39 0.29 0.51
ρ2K 0.29 0.28 0.18 0.40 0.29 0.29 0.19 0.40
ρ2τ 0.17 0.16 0.07 0.29 0.17 0.15 0.07 0.28

Other AR Coefficients
ρz 0.16 0.15 0.07 0.25 0.16 0.16 0.07 0.25
ρR∗ 0.87 0.87 0.81 0.92 0.88 0.88 0.83 0.93
ρζ 0.91 0.92 0.83 0.96 0.92 0.94 0.85 0.98
ρL 0.99 0.99 0.98 1.00 0.99 1.00 0.98 1.00
ρI 0.38 0.40 0.25 0.50 0.38 0.39 0.26 0.50
ρb 0.60 0.60 0.48 0.71 0.60 0.61 0.48 0.71

Standard Deviations
σz 0.009 0.009 0.008 0.010 0.009 0.009 0.008 0.010
σR∗ 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
σζ 0.022 0.019 0.016 0.030 0.025 0.020 0.017 0.039
σL 0.030 0.029 0.026 0.033 0.030 0.030 0.027 0.034
σI 0.109 0.108 0.065 0.163 0.108 0.095 0.066 0.156
σb 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
σg 0.023 0.023 0.021 0.026 0.023 0.023 0.021 0.026
σc 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002
σw 0.006 0.006 0.006 0.007 0.006 0.006 0.006 0.007
σK 0.010 0.010 0.009 0.011 0.010 0.010 0.009 0.011
στ 0.067 0.066 0.059 0.074 0.066 0.066 0.059 0.074

Date Breaks
Tz 2004:Q4 2005:Q1 2002:Q2 2007:Q2 2004:Q4 2005:Q1 2002:Q2 2007:Q2
Tσ 2003:Q3 2003:Q3 2002:Q3 2003:Q4 2003:Q3 2003:Q3 2002:Q3 2003:Q4

Log marginal likelihood -5651.5 -5645.0
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Table G.4: Results from Specification with Transitory Technology Shock

Baseline Transitory Technology Shocks
Parameter Mean Mode 5% 95% Mean Mode 5% 95%
Structural Parameters

h 0.58 0.57 0.51 0.64 0.57 0.58 0.51 0.64

Υ
′′

2.62 2.45 1.51 3.99 3.11 2.66 1.88 4.64
ψb 0.53 0.50 0.37 0.74 0.52 0.48 0.36 0.73
∆z -0.0030 -0.0032 -0.0047 -0.0010 -0.0025 -0.0023 -0.0045 -0.0004
∆τw -0.0179 -0.0201 -0.0284 -0.0047 -0.0176 -0.0204 -0.0277 -0.0039
∆τK 0.0474 0.0485 0.0158 0.0759 0.0498 0.0556 0.0175 0.0767
µ 1.91 1.89 1.68 2.16 1.92 1.91 1.69 2.16

Fiscal Rules Parameters
γgb 0.166 0.026 0.013 0.418 0.134 0.014 0.008 0.405
γcb 0.120 0.029 0.013 0.380 0.117 0.026 0.012 0.426
γwb 0.037 0.021 0.007 0.091 0.042 0.027 0.007 0.104
γKb 0.124 0.032 0.009 0.374 0.121 0.016 0.009 0.364
γτb 0.064 0.053 0.010 0.131 0.063 0.050 0.009 0.133
ρ1g 0.64 0.65 0.53 0.75 0.64 0.63 0.51 0.76
ρ1c 0.68 0.70 0.56 0.79 0.69 0.69 0.58 0.80
ρ1w 0.49 0.49 0.37 0.61 0.48 0.47 0.36 0.60
ρ1K 0.66 0.67 0.55 0.77 0.66 0.65 0.54 0.77
ρ1τ 0.21 0.19 0.09 0.34 0.21 0.21 0.09 0.34
ρ2g 0.31 0.31 0.20 0.42 0.29 0.29 0.17 0.40
ρ2c 0.30 0.29 0.19 0.41 0.29 0.29 0.18 0.40
ρ2w 0.36 0.36 0.25 0.47 0.36 0.35 0.25 0.48
ρ2K 0.29 0.28 0.18 0.40 0.29 0.28 0.18 0.40
ρ2τ 0.17 0.16 0.07 0.29 0.17 0.16 0.07 0.29

Other AR Coefficients
ρz 0.16 0.15 0.07 0.25 0.56 0.61 0.27 0.81
ρa 0.94 0.97 0.86 0.98
ρR∗ 0.87 0.87 0.81 0.92 0.88 0.88 0.82 0.93
ρζ 0.91 0.92 0.83 0.96 0.91 0.94 0.82 0.97
ρL 0.99 0.99 0.98 1.00 0.99 0.99 0.98 1.00
ρI 0.38 0.40 0.25 0.50 0.32 0.34 0.19 0.45
ρb 0.60 0.60 0.48 0.71 0.59 0.57 0.47 0.71

Standard Deviations
σz 0.009 0.009 0.008 0.010 0.003 0.003 0.002 0.005
σa 0.006 0.006 0.005 0.007
σR∗ 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
σζ 0.022 0.019 0.016 0.030 0.023 0.020 0.016 0.035
σL 0.030 0.029 0.026 0.033 0.030 0.029 0.026 0.033
σI 0.109 0.108 0.065 0.163 0.131 0.117 0.082 0.191
σb 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
σg 0.023 0.023 0.021 0.026 0.020 0.020 0.018 0.023
σc 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002
σw 0.006 0.006 0.006 0.007 0.006 0.006 0.006 0.007
σK 0.010 0.010 0.009 0.011 0.010 0.010 0.009 0.011
στ 0.067 0.066 0.059 0.074 0.066 0.066 0.059 0.074

Date Breaks
Tz 2004:Q4 2005:Q1 2002:Q2 2007:Q2 2004:Q4 2005:Q1 2002:Q2 2007:Q1
Tσ 2003:Q3 2003:Q3 2002:Q3 2003:Q4 2003:Q1 2003:Q3 2002:Q3 2003:Q4
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H Additional Figures

H.1 Data for Small Open Economies

Figure H.1: Macroeconomic Outcomes for Small Open Economies

Sources: ABS; Authors’ calculations; FRED; RBA
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H.2 Impulse Responses to Trend Growth Shock

Impulse Responses to Trend Growth Shock
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H.3 Alternative Fiscal Responses to Change in Trend Growth

Figure H.2: Changing the Debt to Output Target Ratio

Note: The solid-dark lines show the median transition path and its 80% confidence band at the
estimated posterior distribution. The dashed-grey lines show the counterfactual transition path and
its 80% confidence band when only the debt-to-output ratio changes to satisfy the government’s budget
constraint.
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Figure H.3: Labour Income Tax Rate Adjusts

Note: The solid-dark lines show the median transition path and its 80% confidence band at the
estimated posterior distribution. The dashed-grey lines show the counterfactual transition path and
its 80% confidence band when only the labour income tax rate changes to satisfy the government’s
budget constraint.
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Figure H.4: Capital Income Tax Rate Adjusts

Note: The solid-dark lines show the median transition path and its 80% confidence band at the
estimated posterior distribution. The dashed-grey lines show the counterfactual transition path and
its 80% confidence band when only the capital income tax rate changes to satisfy the government’s
budget constraint.
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Figure H.5: Figure 9: Constant Government Spending to Output Ratio

Note: The solid-dark lines show the median transition path and its 80% confidence band at the
estimated posterior distribution. The dashed-grey lines show the counterfactual transition path and
its 80% confidence band when the government maintains the g/y ratio across balanced growth paths.
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Figure H.6: Lump-Sum Taxes Adjust

Note: The solid-dark lines show the median transition path and its 80% confidence band at the
estimated posterior distribution. The dashed-grey lines show the counterfactual transition path and its
80% confidence band when only lump-sum taxes change to satisfy the government’s budget constraint.
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H.4 Transitional Dynamics from Alternative Model Specifications

Figure H.7: Estimated Transitional Dynamics from Model with Financial Frictions

Sources: ABS; Authors’ calculations; FRED; RBA
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Figure H.8: Estimated Transitional Dynamics from Model with Population Growth

Sources: ABS; Authors’ calculations; FRED; RBA
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Figure H.9: Estimated Transitional Dynamics from Model with Transitory Productivity Shock

Sources: ABS; Authors’ calculations; FRED; RBA
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I Model with Financial Frictions and Population Growth

I.1 Households and Firms

The representative households of size Nt maximises expected lifetime utility given by:

IE0

∞󰁛

t=0

βtN1−θ
t

󰀣
log (c̃t − hc̃t−1)− ζLt

l̃1+ν
t

1 + ν
+ χbZ

−1
t

󰀓
b̃t + b̃Ft

󰀔󰀤
(136)

where c̃t = Ct/Nt is consumption per person and l̃t = Lt/Nt are hours worked per person,

b̃t = Bt/Nt are government bonds per person and b̃Ft = BF
t /Nt are foreign bonds per person.

The parameter h ∈ [0, 1] governs the degree of external habit formation, 1/ν is the Frisch

elasticity and χb determines the convenience yield. ζt is an intertemporal preference shock that

follows:

log ζt = ρζ log ζt−1 + εζ,t (137)

and ζLt is a labour supply shock that follows:

log ζLt = ρL log ζ
L
t−1 + εL,t (138)

The growth rate of population nt = Nt/Nt−1 is subject to stochastic shocks εn,t and evolves as

follows:

log nt = (1− ρn) log n+ ρn log nt−1 + εn,t (139)

Following Becker and Barro (1988) , the parameter θ represents the weighting factor with respect

to the household size Nt. With θ = 0, the per-capita utility of each generation is weighted by its

size (Benthamite preferences). With θ = 1 the per-capita utility of each generation is weighted

equally, regardless of its size (Millian preferences).
The flow budget constraint of the household is

(1 + τc,t)Ct + It + PB
t Bt +BF

t ≤ (1 + κBPB
t )Bt−1 +RF

t−1B
F
t−1 + (1− τw,t)WtLt + (1− τK,t)r

K
t Kt−1 + TRt

Here, Ct is consumption, τc,t is the tax rate on consumption, It is investment, Bt stands for

government bonds and PB
t is the price of government bonds, BF

t stands for foreign bonds and

RF
t for its gross rate of return, Lt are hours worked, Wt is the real wage per hour worked and

τw,t is the tax rate on labour income. The capital stock available for production at time t is

Kt−1 and rKt is its rental rate, while τK,t is the tax rate on capital income. TRt stands for lump

sum taxes or transfers.
The budget constraint expressed in per-capita terms is:

(1 + τc,t)c̃t + ĩt + PB
t b̃t + b̃Ft ≤ (1 + κBPB

t )
Nt−1

Nt
b̃t−1 +RF

t−1

Nt−1

Nt
b̃Ft−1

+ (1− τw,t)Wt l̃t + (1− τK,t)r
K
t

Nt−1

Nt
k̃t−1 + t̃rt (140)
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where lower case letters with a ∼ denote per-capita quantities.

The capital stock per person evolves according to

k̃t = (1− δ)
Nt−1

Nt

k̃t−1 + ζIt

󰀗
1−Υ

󰀕
ĩt

ĩt−1

󰀖󰀘
ĩt (141)

The function that governs the investment adjustment cost satisfies, Υ(z) = Υ′(z) = 0 and

Υ′′ > 0. ζIt is a shock to the marginal efficiency of investment which is assumed to follow:

log ζIt = ρI log ζ
I
t−1 + εI,t (142)

Output is produced with a Cobb-Douglas production function by competitive firms hiring

capital and labour:

Yt = Kα
t−1 (ZtLt)

1−α (143)

where Zt is labour-augmenting technology whose growth rate, zt = Zt/Zt−1, follows:

log zt = (1− ρz) log z + ρz log zt−1 + εz,t (144)

and so z governs the growth rate of labour-augmenting TFP along the balanced growth path.

I.2 Trade Balance and Net Foreign Assets

The interest rate that the household receives on foreign bonds depends on the economy’s net

foreign asset position according to the debt-elastic interest rule:

RF
t = R∗

t exp

󰀗
−ψb

󰀕
bFt
yt

− bF

y

󰀖
+ ζbt

󰀘
(145)

where bF

y
is the steady-state ratio of net foreign assets to output, and ζbt is the country risk

premium shock which follows the process below:

ζbt = (1− ρb)ζ
b + ρbζ

b
t−1 + εb,t (146)

and R∗
t is the foreign real interest rate which follows the exogenous process below:

logR∗
t = (1− ρR∗) logR∗ + ρR∗ logR∗

t−1 + εR∗,t (147)

The trade balance is output less domestic absorption, that is,

NXt = Yt − Ct − It −Gt (148)
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and the current account is therefore given by:

CAt = NXt + (RF
t−1 − 1)BF

t−1 (149)

In equilibrium, net foreign assets evolve according to:

BF
t = RF

t−1B
F
t−1 +NXt (150)

Per capita variables, except for hours worked and interest rates, trend at the rate of z. When

normalised by Zt, however, the variables bt = b̃t/Zt = Bt/(NtZt), ct = c̃t/Zt = Ct/(NtZt),

yt = ỹt/Zt = Yt/(NtZt), and so on, converge in the absence of shocks to their steady state

values which we denote by b, c, y and so on.

I.3 The Government

The government receives tax payments on consumption, labour and capital income as well as

lump-sum taxes and borrows domestically to finance government spending. Thus, the govern-

ment budget constraint is:

PB
t Bt + τc,tCt + τw,tWtLt + τK,tr

K
t Kt−1 + TRt = (1 + κBPB

t )Bt−1 +Gt (151)

We assume the government sets government spending and taxes rates following fiscal rules
which include a response to deviations of the government debt to output ratio from its steady
state. In particular, we assume rules of the form:

log gt = (1− ρ1g − ρ2g) log g + ρ1g log gt−1 + ρ2g log gt−2 − (1− ρ1g − ρ2g)γgb (byt−1 − by) + εg,t (152)

τc,t = (1− ρ1c − ρ2c)τc + ρ1cτc,t−1 + ρ2cτc,t−2 + (1− ρ1c − ρ2c)γcb (byt−1 − by) + εc,t (153)

τw,t = (1− ρ1w − ρ2w)τw + ρ1wτw,t−1 + ρ2wτw,t−2 + (1− ρ1w − ρ2w)γwb (byt−1 − by) + εw,t (154)

τK,t = (1− ρ1K − ρ2K)τK + ρ1KτK,t−1 + ρ2KτK,t−2 + (1− ρ1K − ρ2K)γKb (byt−1 − by) + εK,t (155)

τt = (1− ρ1τ − ρ2τ )τ + ρ1ττt−1 ++ρ2ττt−2 + (1− ρ1τ − ρ2τ )γτb (byt−1 − by) + ετ,t (156)

where the normalised variables τt = TRt

NtZt
, yt = Yt

NtZt
, gt = Gt

NtZt
, bt = Bt

NtZt
, have steady

states τ, y, g and b respectively. Throughout, τ is set so that given all other fiscal policy rule

parameters the government budget constraint, equation (151), holds in steady state.
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